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The problem of elastic equilibrium of an isotropic cylinder acted upon 
by forces applied to its lateral surface and represented by an integer 
algebraic function of the coordinate measured along the generator has 
been studied by many authors: Almansi [ 1 I, Pearson and Filon [2 I, 
Michell 13 1, Kolosov 14 I , Zvolinski and Riz [5 I, Dzhanelidze [ 6 I, 
and others. Some cases of the analogous problem for an anisotropic solid 
have been discussed by Kosmodamianskii [7 I, Uzdalev [ 8 I (mainly bend- 
ing) and Dzhanelidze [9 ] (general case of anisotropy, loading of general 
and special character). The question of torsion of anisotropic rods has 
been the subject of less elaborate studies; only the case of loading uni- 
formly distributed over the length of the rod has been discussed in a 
paper by Luxenberg [ 10 1. 

The present contribution deals with the torsion of a rod of recti- 
linear or cylindrical anisotropy by tangential forces, varying over the 
length of the rod according to the law of an integer polynomial of the 
nth degree with respect to Z; a general theory is developed and certain 
special cases are investigated in some detail. 

1. General case of torsion of a rod with rectilinear 
anisotropy. Consider a rod having the shape of a cylinder or prisma, 

of elastic homogeneous rectilinearly anisotropic material, fixed at one 
end and carrying tangential loads t distributed over its lateral surface. 
Assume that: 

1) the anisotropy is characterized by the presence of one plane of 
elastic syrmnetry normal to the generators; 

2) the material obeys Hooke’s generalized law and experiences small 
deformations; 
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3) forces are 

We locate origin of system of at the of 
the end of rod with z-axis directed to the 
ators (Fig. Furthermore, we that the t are acting at 
each point tangentially to the boundary line of the cross-section through 
that point, that, in general, they are distributed along that line non- 
uniformly, being, however, reducible to a torque and expressible by an 
integer polynomial of arbitrary degree N with respect to z. 

We shall treat the problem with the same degree of mathematical rigor 
with which the comnon torsion problem is being treated; in other words, 
we shall require that the equations of the problem be fulfilled rigor- 
ously on the lateral surface and approximately, by means of integrals, 
at any cross-section (including the end sections) where we thus confine 
ourselves to the condition that the acting inner forces be equivalent to 
a resultant force and moment. 

(tn is a function of the arc 
(1.1) 

S of the contour of the 
cross-section) 

Using the conventional notations for the components of stress, strain 
and displacement, we may write the system of equilibrium equations of the 
solid under consideration and the boundary conditions for its lateral 
surface in the form 

!++%+!$0 (x%lt) Cl.4 

s, = %,o, + o,zo, + '43% + %Cq, 

cu = a12ax + aa3dy + a33Qt i- a36rxy 

&z = 636, -ta23$ + u334Z + a36rry 

7, ry = hax +a26Qy -I- a36 + a66~xu 

r xz = a55't,, +~aia5~yz , TV2 = ar5h +a44ruz 

5, cos(n, 2) + .drycos(n, y) = - tcos(n, y) 

~,~cos(n, x)+ 6ycos(n, y) = tcos (n, 2~) 

't;, COS(F~, a)$ zyz cos(n, y) = 0 (1.3) 
Fig. 1. 

where the aij are elastic constants, while n denotes the normal to the 
boundary line of a cross-section. 

The moment of the external forces acting on the region of the lateral 
surface between the free end and the cross-section at distance z from the 
free end is 
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.\I z = i n%l p +1 

,=0(n+1)l” 
(ml=\ ,[ t xcos (12, cc) + y cos (72, y)] ds) (1.4‘1 

Y 

where m n is the moment of the forces t, distributed over the contour y 
of the cross-section. For any cross-section the conditions 

\jr,,&djj = \\ %,,d+/ = 0, \~(-w/ + ~~,zx)d+ + 111, = 0 (1.5i ~ 

ss 
o,dxdy = 

ss 
o,xdxdy = 

SC 
G2ydxdy = 0 (I.61 

. 

must be fulfilled, with the integrals taken over the cross-sectional 
area. 

In order to investigate the state of stress produced by the loading 
(1.1) it is obviously sufficient to study the case when the 
proportional to z”, where n is an arbitrary integer number, 
have 

t = t,(s) (f)” 

loads are 
so that we 

(1.7) 

For the more general case (1.1) the stresses and displacements will 
be found by means of superposition. 

Starting from Formula (1.7) for the external loading we use for the 
displacements and stresses hypothetical expressions in the form of sums 
of decreasing powers of z, namely 

u = Zn+2Un+IZ $- znu, + z*--u,_. 4 _ I 
. . 

(1 .SI 

(1 .‘,) 

. . . . . . . . . . . . . . . . 

The quantities appearing in these expressions as multipliers of the 
powers of z are functions of x, y. ?he last terms of the sums are 

a) in the case of n even 



78 S.G. Lekhnitskii 

b) in the case of n odd 

Substituting (1.8) and (1.9) into Equations (1.2) and equating the 

coefficients of equal powers of z on the left- and the right-hand sides 

we find 

un+3 = --Ta+&tiln~~. v,+,= 6 n+zx+Bnii (1.10. n+P) 

where 6, A, B are arbitrary constants and the following systems of equa- 
tions: 

(1.10. ni- 1) 

%3”33 
~ Jr7 == a,j -- ‘, , = 1, 2, 6; 

k=n, n-2,. , 0 for n even \ 

0% . k -n,n-Z3 ..,Ifornodd 1 

The functions u m oYm' rYZ 
’ satisfy the boundary conditions as 

well as the condit!oks which'fbllow from (1.6), and they are to be de- 

termined in the region of the cross-section. 

2. 'lhe general course of the solution of the problem. Aqua- 
tions (1.10) show that the determination of the solution of the problem 
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under discussion reduces to successive solution of two types of problems 

similar to the problems of simple torsion and of plane strain. For n even 

we have 1/2(1x + 2) problems of the first type and the same number of 

problems of the second type; for n odd it is necessary to solve 1/2(n+ 3) 

problems of the first type and 1/2(n + 1) problems of the second type. 

We introduce the following notation: 

k k k 
al , 02 9 7 

f1 
k-1, ,k-1 

2 

L4=&2-& 

Furthermore, 

setting 

represent a particular solution of the first two 

equations (l.lO.k); 

represent a particular solution of the first equation 

of the system (l.lO.k-1); 

aa a2 
L2 = a44w - 2a45 axay 

a* 
+ a55 w 

2P26 & + c&312 + Pld & - 43x? & + IL 6 (2.1) 

we introduce the stress functions $,,+ 1, $k_ 1, Fk by 

a2Fk 
%ik = yjp + 52k7 

a2Fh. 
TX:: = - ~ + rk asay (2.2) 

k-l 
z,Z 

aqk--l 
= - ax -+ r2k--1 

Then we obtain on the basis of (1.10) the following equations for the 
stress functions: 

&&Lfl-I -2(n+2)%z;, (2.3.n + 1) 

L,Fk = $[%(A + ~)W/C+I -P&rk --P2#2' - P2s-Ck3 +- 

(2.3. k) 

aa -- 
I 

s (k + 1) wk + 1 - pll%li - b@zk 
r a?42 a33 

- PI&k] - 

- &[E (k -i- 1) wk + 1 - ~ltl~lk - Ij21352~ - fb?tk] 

(k=n. n-2,. .., 0 or 1) 

&$k _ 1 = k (‘2 - 2) + L (a4521k-1 f a44z2k-1) - $ (as5rclli-l + a45z21i--1) 

(k = n, n - 2,. . . , 2 or 1) (2.3.k-1) 

Transformation of the boundary conditions by means of contour 
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integration analogous to that used in the theory 
and of torsion (see e.g. Ill, p. 103 1 ) leads to 
for the boundary line y : 

%+I = CT%+1 

f dy + Qdx --z”dy ) 

0 

dF 
A = - 
32 

i (a,kdx -- +dy)+ cI;‘, ‘2 = i (+cdx 

0 0 

of the plane problem 
the following conditions 

+ Gl’ 

c nH 

- s,"dy) + ck” 

(k=u-2, n-4,..., 0 or 1) 

$__I == I (z,k-‘dx - a,“-ldy) + ckpl (k = n, II - 2, . 2 or I) 

(2.4.n+2) 

(2.4.n) 

(2.4.k) 

(2.4.k-I) 

The integration constants c,+ I, c,‘, . . . , ck_ 1 can be fixed arbi- 
trarily on one of the contours representing the boundary of the multiply 
connected region of the section; the integrals are taken along the con- 
tour between the starting and the current points, thus representing func- 
tions of the arc s. 

The conditions (1.6) at the cross-section resolve into 

a. 

il a :2+-‘&dy = $+‘dxdy = 0. 1, \ (- &‘y + r,“;‘x, d@/ -L- (n ,“;, In = 0 

(2.5. II + 1) 

‘I \ &‘;-‘dzdy = \ \ z,k-l d&y = 0, j j (- &‘y + q,!-‘.r) dxdy = 0 (2.5. k - 1) 

(k = II, II - 2, , 2 or 1) 

\ \ a,“dxdy =z 5 \ a,kxdxdy = \ ozkydrdy = 0 
s 

(k = ,I, /r-~-2.. , 0 IIJLu I) (2.5. 14 . 

Consider, in particular, the case when the cross-sectional domain is 
simply connected. For the latter we may assume that $n+ 1 = 0 along the 
contour. Then the following course of solution of the problem may be 
contemplated for an arbitrary integer n m> 1: 

1. Solve the problem of simple torsion, i.e. determine $,,+ 1, 7:: ‘, 

lYz 
n + ’ leading to 

$,,+I r (FL f 2) ,n,+%$ (z, Y) (2.6) 
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lhe constant en+2 follows from the third equation (2.5. n+l), lead- 

ing to 

(2.7) 

where C denotes the rigidity in the usual sense (i.e. for a like aniso- 
tropic rod twisted by manta applied to its plane ends). l'he first two 
conditions (2.5. n+ I) will be fulfilled identically, because $J= 0 along 
the contour. 

2. Determine 'o,+ I and oln, ozn, r" from Equations (1.10. n+l) and 
(1.10. n), leading to 

where I!',+ 1 is a function free of indeterminate constants, while C,+ 1 
is a constant of integration. 

3. Solve the plane problem, i.e. find oxn, CI li, 
three functions will be free of indeterminate e ements, 31 

r$ and ozn. 'lhe first 

while 

It 52 R _._ r tn + 2;: -t- 1, (.4n_ce.r' _1- /3,,,,?/ f C,G1) - - Jzfl- - (2.9) 

The three arbitrary constants will be found from the conditions 

(2.5. n) for 0 n. t 

4. B&ermine Un, vn from (1.10. n) as well as IT-', f!j- '; we find 

where U,, V, are known functions, while 6,, A,, 3, are new arbitrary 
constants. 

5. Determine I/J,,_ 1, ri"l, T;; 1 from (2.3. n-l), leading to 

where $t ‘n- 1j F,,_ 1~ S,,_ 1 are known functions; of the conditions 
(2.5. n-l) the first two are fulfilled identically, while the third 
gives 

'Ihen we find 
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The arbitrary constants 
(2.5. k-l) and (2.5.k). 

are to be+ determined from the conditions 

Having arrived at the last terms of the sums (1.8) and (1.9) we ob- 
tain three indeterminate constants representing wrigida displacements: 
6,,A,, B, (in the case of n even) or A,, B,, C, (for the case of n odd). 
Adding to the displacements the missing terms representing @rigid" dis- 
placements and containing three constants, we find all six constants from 
the constraint conditions of an element of the terminal cross-section. 

'Ihe same order of operations in the process of solution is preserved 
in the case of a cross-section of multiple connection, with the differ- 
ence that the formulas for fik become more complicated. 

Adding to the obtained stresses and displacements the solution for 
the case of a rod with a free lateral surface acted upon by moments M' 
applied to the end sections, we can obtain the solution for a rod with 
both ends fixed; the unknown moment reaction M' is then to be determined 
from the constraint conditions of the end z = 0. 

Entirely analogous is the procedure of solution for the torsion prob- 
lem of a rod of cylindrical anisotropy, with an axis of anisotropy 
parallel to the generators and a plane of elastic symmetry normal to that 
axis. In this case we have to start from the fundamental system of equa- 
tions in cylindrical coordinates analogous to (1.2) 

(2.14) 

The axis of anisotropy is used here as the z-axis. The order of the steps 
for determination of the unknown functions and constants remains the same 
as in the case of rectilinear anisotropy; it leads to equations of the 
second and fourth order for the stress functions +k_ 1, Fk, similar to 
the equations of the theory of torsion and plane strain (see 111, pp.179, 
182, 201 I), which must be solved consecutively. 
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3. Torsion of a rod of elliptical cross-section. Ihe treat- 
ment of actual problems may be simplified by use of complex representa- 
tion of stress functions, stresses and displacements by means of func- 
tions Qjb(zj) of the complex variables zj = n + pjy (j = 1, 2, 3; k = n, 

n- 2, . . . . 0 or l), as in the theory of torsion, and of the plane prob- 
lem (Ill, pp. 112,150 1 ). ‘lhe problem is then reduced to the determina- 
tion of the functions Qj,(zj) in the region of the cross-section (the 
total number of the functions is 1/2(3n + 6) if n is even and 1/2(3n+ 5) 
if n is odd); these functions must fulfil known boundary conditions along 
the contour, and the number of these conditions secures correctness in 
the statement of the problem and the uniqueness of its solution. 

If the rod has the shape of an elliptical cylinder (Fig. 1) and the 
loading is uniformly distributed along the contour of each cross-section 
so that 

t=t,;n 0 (3.1) 

where t, = const, then the solution of the problem is elementary for any 
degree n in terms of integer polynomials. ‘lhe functions I&_ 1, Fk become 
integer polynomials of degree n + 4 - k; the coefficients of the poly- 
nomials are determined by Equations (2.3), the boundary conditions and 
the conditions (2.5. k-l) of the cross-sections. We give here the ex- 
pressions for the constants and the coefficients of the first terms in 
the expressions for the stresses and the displacement w of an orthotropic 
rod (a 16 = az6 = as6 = a,5 = 0), one end of which is built-in: 

In these formulas 
c = a/b. 

In the particular 
result 110 1 

a and b denote the semi-axes of the ellipse and 

case of a uniformly loaded rod we obtain the known 
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/ 

Fig. 2. 

The stress components, with the exception 

of Uz’ are in this case independent of the 
elastic constants; in other words, they are, 
respectively, identical to the corresponding 
components for the isotropic rod. 

4. Torsion of a hollow cylinder by symmetrically distri- 
buted loads. Consider a hollow circular cylinder (tube) characterized 
by cylindrical anisotropy with an axis t of anisotropy coinciding with 
the axis of the cylinder. Assume that one of its ends is fixed and the 
other is free, while twisting tangential forces are applied to the 
cylindrical surfaces (Fig. 21, these loads being proportional to a 
certain power of z and uniformly distributed along the contour of every 
cross section, so that 

(4.1; 

Ibis problem is easily solved if there is one plane of elastic sym- 
metry at each point - normal or radial; however, in order to avoid simple 
but cumbersome computations we shall concentrate on the case of an ortho- 
tropic cylinder (u r6 = as6 = as6 = ad5 = 0 in Equations (2.14)). 

We introduce the following notations: a, b are inner and outer radii 
of the cross-section, respectively, c = a/b, 1 is the length of the rod, 

Go, = l/u,, is the shear modulus corresponding to changes of angles be- 
tween direction 8 and the axial direction, i.e. for planes parallel to 
the axis and normal to a radius of a cross-section,Gr8 = l/ab6 is the 
shear modulus corresponding to changes of angles between the directions 
r and 8 in the planes of the cross-sections 

In the case under consideration we may 

Gr= Gg= G,= Trz = O> (4.2, 
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'lbe fundamental system (2.14) assumes the form 

(4.3) 

$( r%l3) + $(r"re*) = 6, Gez g = roz, G,o (I$-+) = tro 

In these systems of equations u, v, w are the projections of the displace- 

ment on the directions r, 8, z, respectively. 

We seek the displacement v and the stresses in the form of sums 

v = z”-+‘3 1?,tf3 + Pv, -k c-2 v,_.) -t . . . (4.4) 

T,y =- 2” Zren + p--2 lyre 
n-2 

-+ . ..7 t!& = z 
n+1 

TcJz 
n+1 

-k z 
n-1 

TtJz ‘t-1 f (4.5) 

'lhe last terms in the sums will be va, rre, zrj, in the case of n even 

and zvl, zri8, ri, in the case of n odd. 'lhe coefficients of za are func- 

tions of F only. 

Substituting these expressions into Equations (4.3) we obtain 

V n+2 - - J+.n+z r (4.6. u+2) 

n+l rez = (rz + 2)&+zGRz~ (4.6. n+lj 

G,,B, k+i 
rrt:= yL __ - 

rp s 
r2r0z k+ldr, vk- 6,kr -+ -&“xdr (4.6. k) \ rR_ r 

(/; = II. I1 --2,... ,o or 1) 

!i-1 
to2 = kGezv, (k=n. /z--2,... , 2 or 1) (4.6. k-2) 

'Ihe conditions for the outer and inner surfaces of the cylinder are 

Tan = tnb/ln, Tr$ 0 when r=b (4.7) 

rre 
n 
= tm/ l”, z,: = 0 when p = a 

'lhe conditions for the plane end faces (and for any cross-section) 

lead to the relations 

b b 

a n+l ,.‘&. _1 
t 

Te* 
&l2- tnb b2 

a 
In(ni.l) ' s Gr “-‘,.2&_0 (4.8) 

a 

Knowing the type of the function I 

consecutively the functions T n 

iz ' we find fro; Equations (!.6jk) 

‘np r8, 
n- 1 

t-0 ) 9 q?- , v,_ 2’ r 02 ’ 
and so forth. 'lbe determination of the unknown constant&+ and B, takes 

place with the aid of the conditions (2.7) which permit all constants 
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except one to be found, namely a,, for even or for odd; 

6,‘~ to the displacement; the constant tiO' will 

be determined from the condition for the fixed end. The simple structure 

of Equations (4.6.k) permits the construction of general expressions for 

displacement and stresses corresponding to an arbitrary n. In the case 

of a tube these expressions become quite cumbersome; we give here only 

the first two or three terms of the sums: 

T 

+ (IL 2) 1) n (ra - n (li I) B,g fi n--2 

-- 
6. 4. 2 a.,,__: &I74 __1___-_- 4 _;- ') r” 

In the case of a solid rod of circular cross-section (a = 0) displace- 

ment and stresses can be represented for an arbitrary integer n by the 

expressions 
li :1 

where 
$& = _(n+2nl-22k)(n+2m-22k-l)...(n+1--2k)_ 1 

(m + I)! m! 
/1i_2pk 

r?L ( J i 2”r ’ WL -- 1 ,’ 

(r/l := 1, 2, 3 I...; n, k == 0, 1, 2, 3...) (4.11) 
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‘Ihe upper limits of snuvuation in the first two sums of Formnlas (4.10) 
are 1/2n in the case of even n and 1/2(n - 1) in the case of odd n. 

If the free end of the hollow or solid cylinder is acted upon by a 
twisting moment M’, then to the displacements and stresses (4.9) or 
(4.10) one must add 

z7’ = 
2&f 2M’ 

Gezx (P - a4) 
rz + %@‘r, %‘= 3t (64 _ n*) r, Go’ = 0 (4.12) 

respectively. If the rod is fixed at both ends, then the unknown moment 
reaction M’ and the rotation a,, + 9,’ (or 8,’ ) are to be determined from 
the conditions at the end faces. If we assume that the outer contours of 
the plane end faces are fixed, then the conditions mentioned are 

v(b, 0) = v(b, 1) = 0 (4.13) 

5. Particular casea of distribution of torsional loading. Let us con- 
sider in greater detail the case, discussed in Section 4, when the inner 
surface of the hollow cylinder is not subjected to loads, while the load- 

ing, applied to the outer surface, is distributed according to the quad- 
ratic law 

t=t+o+al -++s$) (5.l) 

where ag, ol, a2 are given dimensionless coefficients. This loading re- 
duces to a twisting moment 

II!&+_ mobal (6~0 + 3~ + 2~2)~ or to = $& 6ao + ji, + 2a (5.2) 
a 

We give in the following the formulas for displacements and stresses 
obtained on the basis of (4.9). 

Case f. One end fixed, the other free. 

t,b2 
’ = G,, (b'L-- u4) 

2 (12 - z‘q uo + 

*-K 
I( 

22 + ‘2 cr,+a++ ay ) (rs + $) - (a0 + ~11 + ~2) (b3 + -$) $- + 

2 
-t--T 

bQ + a2b2 + 4aP 

62 f a2 ( 

z 22 
m + a?, - al-i---a212 r + H (5.3) I 1 

a 

+ 24 (bf+ a*) 
$- 

C 
2 (b4 + a2b + 4aU) (9 - &Jr) + 2a4 (br - 3aZ) ($- - r j + 

+ (ba + a2) (b4r - r5) + 1.2~~ (b2 + a9 r,ln + II 
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To, t,b” =7-T 1 z2 
-2 ( 2a,z+QT+ 2uz 23 

--F,r+ 1 3 

+ _& (cL1 + +I (rs + $> _ g b4+2b2 + 4a4 
3 (b2 + a2) 

!‘E’ + 7.) r } (5.4) 

z 
t,b2 

re = b4 - a4 

+ g 612 (;+ aa) [ (b4 + aW + 4a4) r2 + a4b2 (“5 - b2) - (b2 + 02) (r4 + 3a4)]} 

The twist angle in any cross-section is a variable quantity depending 

on r and Z; we shall call the twist angle for a given cross-section the 

angle by which the outer contour of the section rotates: 

v (b, 2) 
cp” 

b 
(5.5) 

In the case under consideration we obtain the maximum twist angle at 

the free end: 

Ml %+2u1+ u2 r g aI+ u-2 
_____ 

'%x+x = nG,, b4 (1 - c4) 6u, -+ 3u1 + 2u, I 1 - 2 6u, + 2u1+ u!J (+y f (c)I (5.6) 

where 

(1 + 369 (1 - c2)2 
f(c)= 1+$ 9 

a 
c=- 

b 
(5.7) 

The maximum stress appears at the outer surface of the fixed end: 

2111 
z max = 1 zQz(bg ‘) 1 = .&3 (1_c4) ’ -$- &, ~~12~2a2 [-$>“f (C)l (5 8) 

The complete twist angle and the maximum stress in a rod with its 

cylindrical surface free, but twisted by moments of the same amount M 

applied at its ends are, as is well-known, respectively equal to 

2Ml 
‘PM= xG,,b4(l -cc”) 

2M 
‘~4 = nbs (1 - c4) 

These formulas permit comparison of distributed and concentrated twist- 

ing loads with each other and an estimate of the changes in $m,a, and rmax 

which take place if the moments, acting at the ends, are replaced by dis- 

tributed loading. 

Case 2. Both ends fixed. 

t,ba 

= G,, (b4 - a”) 
2u, (lz - 22)$ + (122 - 23) + $ (Pz - 24) 1 r + 

+ + [(a0 + aI +I) (? + -$ - b”r - $) + cc2 -$ (r3 + $,- 
~ 
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a2 2b2 (b* + a”b2 + 4a*) z2 + (b2 + 3a2) (b2 - a2)2 lz 
-31” b2 (b2 + a*) 3 

r+ 

$a2 

+ 24 (bL + a”) 1” 1 
2 (b* + a2b2 + 4a*) (rS - b2r) + 

+2a*(bP-3a2)(:-rr) - (b2 + a2) (b*r - r5) + 12a* (b2 + a2) r2 In -&I} (5.10) 

The stress r rB is again determined by Formula (5.4) given above, while 
rBt is to be obtained by differentiation of v (4.3). 

If a rod with fixed ends is acted upon by a concentrated torque M 

applied to it at its center cross-section, then the maximum twist angle 
(at the central cross-section) and 

A11 
‘%f ‘= 2nG,, b* (1 - c*) ’ 

(as in the case of a rod of length 
tude l/2 M). 

the maximum stress are 

M 
zM’ = nb3 (1 _ c4) 

(5.11) 

l/2 1 twisted by a torque of magni- 

Fig. 4. 

Here are a few particular cases. 

1. Rod with one end fixed, acted upon by loads uniformly distributed 
over its length (Fig. 3) 

The same results are obtained for rods with both ends fixed. 

2. Rod with one end fixed, loaded linearly along its length (Fig. 4). 

If the fixed end is z = 1, then a0 = a2 = 0. aI = 1 

If the fixed end is z = 0, while the other end is free (Fig. 41, then, 
of course, both the twist angle and the stress are larger than in the 
case of the end z = 1 being fixed, and we find 
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In the case of a long thin rod the ratio b/l is a small quantity, and 
if the ratio g of the shear moduli is small or comparable with unity, the 
second terms in Formulas (5.13) and (5.14) can be neglected, and we then 
find 

3. Rod with both ends fixed. carrying loads distributed according to 
the parabolic law (Fig. 

Here we have a0 = 0, aI = - a2 = 4 and A--L-+f‘n 

5). 

(5 l5) 

(5.16) 
Fig. 5. 

In the case of a solid cylinder we have to use the same formulas after 
having substituted into them c = 0, f = 1. 

Take as a further example the case of a solid cylinder with one end 
fixed and carrying the load 

using 
from the 
from the 
the form 

the general expressions (4.10). (4.11) with n = 6 we determine 
boundary conditions consecutively the constants B8. 86, 84, $0 and 
constraint condition the constant So . The ultimate result is of 

tG 

’ = - GBzb21e 
-$ (28 - 1y Ni j i ’ (2b2r - 323) 26 + b3Fj + 

+ -$ i*j” [(5b*r - 12b”r_ J5) 24 + b51”J + + @f-j” [(2Gb+ - 75b*r3 T 

+ 6ObV - 15r7) z2 + 4b7P] + $ i+‘)’ (- 52bV + 50b *r5 - 2ObV’ + 3r9 + 19b3) 1. 
I 

~6 + -$- (b* - re) 

+ 4 ~-$-~” (13bJ- 12bV f 3~*)]} 
/ 

(5.W) 

(5 Icj) 
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All given formulas become formulas for an isotropic rod if we sub- 
stitute ‘Go, = ‘C, g = 1. 
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